Canonical rational equivalence of intersections of divisors
نویسندگان
چکیده
منابع مشابه
Canonical rational equivalence of intersections of divisors
We consider the operation of intersecting with a locally principal Cartier divisor (i.e., a Cartier divisor which is principal on some neighborhood of its support). We describe this operation explicitly on the level of cycles and rational equivalences and as a corollary obtain a formula for rational equivalence between intersections of two locally principal Cartier divisors. Such canonical rati...
متن کاملThe Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7
Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...
متن کاملCanonical Divisors on T-varieties
Generalising toric geometry we study compact varieties admitting lower dimensional torus actions. In particular we describe divisors on them in terms of convex geometry and give a criterion for their ampleness. These results may be used to study Fano varieties with small torus actions. As a first result we classify log del Pezzo C∗-surfaces of Picard number 1 and Gorenstein index ≤ 3. In furthe...
متن کاملRational Divisors in Rational Divisor Classes
We discuss the situation where a curve C, defined over a number field K, has a known K-rational divisor class of degree 1, and consider whether this class contains an actual K-rational divisor. When C has points everywhere locally, the local to global principle of the Brauer group gives the existence of such a divisor. In this situation, we give an alternative, more down to earth, approach, whi...
متن کاملDivisors on Rational Normal Scrolls
Let A be the homogeneous coordinate ring of a rational normal scroll. The ring A is equal to the quotient of a polynomial ring S by the ideal generated by the two by two minors of a scroll matrix ψ with two rows and l catalecticant blocks. The class group of A is cyclic, and is infinite provided l is at least two. One generator of the class group is [J], where J is the ideal of A generated by t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inventiones Mathematicae
سال: 1999
ISSN: 0020-9910,1432-1297
DOI: 10.1007/s002220050317